

CS488 Computer Graphics
Section 1 (Craig Kaplin)

Final Project (A5)

Submitted by:
Shawn Henderson

sbhender
00183318

CS488 Shawn Henderson
Final Project Report 00183318

 1

Objectives

Name: Shawn Henderson
UserID: sbhender
Student ID: 00183318

__ 1: Environment generation responds to the displacement map

__ 2: Character keyframe animation is present, and responds to interaction

__ 3: Transparency effects blend with other elements properly

__ 4: Texture mapping has been used, with normal animation to create environment
 undulation.

__ 5: 3D Collisions are implemented, both static-dynamic and dynamic-dynamic

__ 6: Feedback is provided via an orthogonal HUD

__ 7: View Frustum Culling is implemented and can be seen via debugging mode

__ 8: Particle systems are present and are used effectively

__ 9: A sufficient Artificial Intelligence has been applied to computer controlled elements

__ 10: Sounds and music have been created, are present, and reflect game events

Declaration:
I have read the statements regarding cheating in the CS488/688 course handouts. I affirm
with my signature that I have worked out my own solution to this assignment, and the
code I am handing in is my own.

Signature:

CS488 Shawn Henderson
Final Project Report 00183318

 2

Statement

You awaken after unknown time; you hear a voice call to you, a beacon. You are a single
sperm, but quite unlike your sibling cells. You are mutated; with abilities not possessed
by the others, and you and the ovum have the potential, if joined, to form a new and
better being. If the ovum joins with another, despite its own mutation, the chance will be
lost. You must advance through the reproductive landscape, avoiding the dangers that
beset you. Normally the usual defenses of the body do not attack the foreign sperm cells,
but you are so different, that you have been designated a threat. No less so than the other
sperm, who do not recognize you as being from the same originating genes.
You must defend yourself, advance, find new mutations, food, and flagellate your way to
the Ova, who must accept the first to reach her, and you must be that one, to form the

Zygote

This will be an interactive game based on OpenGL using the SDL stub. You control the
sperm and progress through the game as based on advancing levels, defending yourself
from enemies.

Manual

Building and Running

 To build Zygote:
 From the /src directory, type make

 To run Zygote:
 From the / directory, type ./zygote

Note: The SDL sound driver may need to be modified if there is a delay in the sound,
from the command line, type:
 export SDL_AUDIODRIVER=dsp
 export SDL_DSP_NOSELECT=1

Game Screens

 The game starts at a title screen, use the arrow keys to choose Start Game or Quit, hit
any other key to invoke the currently selected action.

 If the game is started, the main game screen will load with the level. On the sides of the
screen, there are two indicators; the left represents Membrane Integrity, which decreases
when you are damaged. The right represents enzyme level, your character’s ammunition.
The camera stays fixed a distance behind your avatar, as you move. A radar is also

CS488 Shawn Henderson
Final Project Report 00183318

 3

visible on screen, you are fixed in the center, the enemies are points on the screen. You
can freely swim around, firing enzyme shots at enemies. If you hit a wall, you are stuck
to it, and must rotate to another orientation to continue moving. Occasionally, messages
are displayed to the user at the bottom the screen, and disappear after a short while. They
are also stored in the history of the console (see Console). When enemies are destroyed,
they may leave behind a pool of glucose which you can consume to repair membrane
damage.

 When the game is quit via the console (see Console), the ESC key, or you are destroyed,
the game displays the end credits as if the complete incarnation of the game had been
implemented. Any key will exit to the shell.

Controls

In the main game, the following controls apply

 Cursor Up/Down – Adjust Pitch
 Cursor Left/Right – Adjust Yaw
 Delete/PageDown – Adjust Roll
 Q, W – Flagellate tail (used in quick succession propels you forward, you must alternate between them)
 Spacebar – Fire enzyme
 F1 – holding displays quickhelp
 P – Pause Game
 ~ (tilde) – Raise/Lower console
 ESC – Quit

 If “godview” mode is on (see Console) then the following mouse controls are available
(as seen in Assignment 3)

 Left Mouse Button – X mouse movement translates view in X axis, Y movement in Y.
 Middle Mouse Button –Y mouse movement translates view in Z axis.
 Right Mouse Button – Rotate view using virtual trackball

Console

 Pressing the ~ (tilde) key displays the console. While the console is down, all keys are
mapped to control the console.

 Backspace – delete last character on command line
 Up/Down – scroll history
 Left/Right – scroll command line history
 Enter – run currently input command

CS488 Shawn Henderson
Final Project Report 00183318

 4

Many of the game’s controllable options can be set and toggled via this screen. A partial
list follows:

 debug [on|off]

Toggles display of game information, including character location, velocity,
frames per second, etc.

 fog [on|off}
 Toggles the display of fog

 shownormal [on|off]
 Toggles the display of vertex normals

 showfacenormal [on|off]
 Toggles the display of face normals

 showtexture [on|off]
 Toggles the display of textures

 animatenormal [on|off]
 Toggles the animation of vertex normals (bumping)

 setenvcollide [on|off]
 Toggles the ability for the main character to collide with the environment
(clipping)

 setfarplane [number]
 Sets the far clipping plane to the value of the parameter number

 godview [on|off|reset]
 Toggles the view of the god view, and the ability to manipulate it. If the
parameter is reset, the value of the godview toggle is unchanged, but the view translation
and rotation is reset to the initial values)

 frustumcull [on|off]
 Toggles frustum culling

 music [on|off]
 Toggles the playing of the in-game music

 sound [on|off]
 Toggles the playing of the in-game sound effects
 quit
 Quits the game

CS488 Shawn Henderson
Final Project Report 00183318

 5

Keyframe Editor

 To build from the /key directory: type make
 To run, type ./keyedit

 The keyframe editor is a simple extension of the puppeteer code from assignment 3,
most of the controls remain from that incarnation, but with a new menu and widgets. All
keys use linear interpolation.

Status Bar:
 Near the bottom of the screen, there is a status bar. It indicates the current frame
number. If there is an asterix next to the number, this indicates that there is a key in that
frame.

Frame Scrollbar:
 The scrollbar at the bottom of the screen facilitates the quick scrolling through the
frames and selecting a specific frame, the screen animates while this occurs.

Animate Menu:

• Animate – A check menu that, when active, indicates that any joint manipulation
in the current frame will cause a key to be added for the currently selected joints.

• Next Frame (N) – Advances to the next frame, wrapping around at the end of the
animation.

• Previous Frame (P) – Goes to the previous frame, wrapping similarly.
• Adjust Timeline – Displays a dialogue box with the current length of the

animation, and allows the user to alter it.
• Key (K) – If the animate menu is checked, this adds a key, of the current joint

rotations, for each joint currently selected, to the current frame.
• Delete Key – If the animate menu is checked, this key will delete all keys for the

selected joints on the current frame.
• Play/Stop – Plays the animation
• Speed Up (1) – Reduces the delay between frames when playing
• Speed Down (2) – Increases delay between frames when playing
• Save Keys – Displays a file dialogue to allow the user to pick a filename to save

the key data.
• Load Keys – Displays a file dialogue to allow the user to pick a filename to load

key data.

CS488 Shawn Henderson
Final Project Report 00183318

 6

Implementation

Displacement Maps (Objective 1)

 The environment is created by two deformed planes, one the ‘ground’, one the
‘ceiling’ which define the game world. The planes are deformed by PNG files, where the
grayscale elements define the relative displacement of the vertices. The vertices have a
one-to-one correspondence with the pixels in the PNG file, so a higher resolution file
results in a more finely tessellated terrain.
 The World class pre-calculates the entire field of vertices, the vertex normals, the
animated normals, and texture coordinates. The WorldPortion class gets references to
ranges to those values, so as to divide up the large plane into a grid of smaller ones, for
later purposes. WorldPortion calculates the face normals and face lists for the triangles,
for cleaner collision detection.

 World intersection, definition and rendering are implemented in
world.cpp/world.hpp.

Keyframe animation (Objective 2)

 The keyframe editor (keyedit) in the key directory is used to keyframe the sperm
tail, and could be used for any future characters. The use of the keyframe editor has been
described in the manual.
 When the KEY file is loaded for use against a particular model (thought
SceneNode’s) all the keyframes are linearly interpolated early, such that every frame in
the animation is fully keyed.

They KEY file format is a simple ascii flatfile, and consists of chunks as follows:

key #
 jointname1 angle_x angle_y
 jointname2 angle_x angle_y
 …
key # ……

In the game, as you accelerate, the tail beats faster, simply by proportionally tick’ing the
animation more often.

 Character animation and definition is stored in entity.cpp/entity.hpp.

Blending (Objective 3)

 There are several blended elements in the game, such as the text, the on-screen
display and the console. The text, for example, use a black and white texture that denotes
opaqueness, it is itself the alpha map. Thus the form of the font is defined, but by using
the OpenGL colour routines, the colour can be easily changed. Particles also use this

CS488 Shawn Henderson
Final Project Report 00183318

 7

mechanism. As it is difficult to tell which particle should be in front of any others,
sorting is not required. The other elements are orthogonally projected, and sorting is
irrelevant.

 Blending is implemented in various locations, includ ing Console.cpp/Console.hpp, and
viewer.cpp/viewer.hpp

Environment texture mapping and animation (Objective 4)

 The environment uses animated normals and textures to give an effect of a heartbeat.
The normals are calculated for each vertex, which is formed from an average of all the
face normals that share that vertex. Animated normals are generated and stored, which
rotate the normal slightly for the duration of the heartbeat.

This was found to be insufficient to achieve the desired effect, so in addition the texture
is translated in a little circle on each beat to increase the sense of undulation.

 Normal pre-calculation code is stored in the World class in world.cpp/world.hpp, the
use of those values are seen in WorldPortion’s render routine.

3D Collisions (Objective 5)

Static-Dynamic collisions are implemented to allow collisions between the environment,
and the characters and bullets.

Each WorldPortion calculates a bounding sphere for it’s sub-region of the environment
plane, and this is used to detect intersection first. The sphere-sphere collision detection
implements a technique written by Oleg Dopertchouk, which goes beyond the simple test
to see if the squared distance between the two spheres is less than the squared sum of the
radii, to include the velocities of the elements to insure that objects do not pass through
each other because the velocities from frame to frame never allow the bounding volumes
to actually intersect.

If collision with the environment passes the sphere test, it then tests against all the
triangles in that portion. This originally used a method very similar to raytracing a mesh,
however a faster method was found that worked against triangles as a special case.
Tomas Möller and Ben Trumbore developed the technique, and provided the code instead
of a description of the algorithm. The algorithm uses the property that points inside a
triangle (defined with three points, p0, p1, p2) will form a constraint of real numbers u
and v, where the intersection point is (1-u-v)*p0 + u*p1 + v*p2, u, v > 0, and also that u
+ v <= 1. The benefit of this routine is that no plane equation needs to be maintained,
and the detection of whether the point is in the polygon need not be done

CS488 Shawn Henderson
Final Project Report 00183318

 8

 Environment collision code can be found in the World and WorldPortion classes in
world.cpp/world.hpp

Dynamic-Dynamic collision between shots and characters, and characters and characters
is done by simple bounding sphere, and uses the same routine as the initial check for the
environment collision.

 An all purpose routine is defined in the Viewer class, in viewer.cpp/viewer.hpp.

Heads-Up Display (Objective 6)

Various onscreen indicators are orthogonally projected, and use alpha-masked PNG’s on
quads. This includes messages, indicators, radar and the console. They are blended so as
to not occlude the gameplay area.

 Implementation found in viewer.cpp and Console.cpp

Frustum Culling (Objective 7)

As the environment is most complicated object, it is most useful to cull. Each
WorldPortion has a bounding sphere, and the frustum is defined by planes in the Cam
class. When the view is moved, the Cam extracts the new frustum definition. The
World/WorldPortion rendering routines get the Cam and use the frustum to determine
which portions are inside the frustum. The bounding spheres are simply checked against
the frustum, and all which lie completely outside are discarded from the rendering
pipeline.

The check for intersection of a sphere and the frustum is essentially the check of
intersection of the sphere with each of the six planes. If the sphere is outside of any of
the planes, we know that it is outside the entire frustum, and similarly, if a sphere
intersects any plane, it intersects the frustum. For each plane, we find the distance
between the sphere and the plane, and if the distance + radius < 0, then we know the
sphere was on the outside (as the normal points inside the frustum). Intersection is
similar, checking the absolute value of the distance against the radius. If control passes
both of these tests, we test for the next plane, and passing all tests implies the sphere is
completely contained within the frustum.

The actual extraction of the frustum planes from the projection and the modelview
matricies is given by Gil Gribb and Klaus Hartmann. The frustum is stored in the Cam
class, in cam.cpp/cam.hpp

CS488 Shawn Henderson
Final Project Report 00183318

 9

Particle System (Objective 8)

A particle engine class was developed to allow for interesting graphical effects. Enzyme
shots use a particle type to indicate the bullet, another to indicate the shot hitting the
environment, another for hitting an enemy, and finally an explosion. Particles themselves
are rendered as blended, textured quads which always face towards the screen. Various
blended textures are used for the different particle types, and each particle uses a random
angle, determined in the constructor, to rotate the texture coordinates, allowing the
particles to appear less uniform. The particles fade out as they run out of ‘life’, and many
of the systems in use by the game use decelerations high enough to cause the particle to
stop before it has died, to give the illusion of a viscous liquid medium.
Particles are oriented to face the screen by simply erasing the top- left 3x3 submatrix from
the matrix on the top of the openGL modelview matrix stack. This eliminates all
rotations and scalings, effectively returning the rotation of the object to the original
matrix, where z is perpendicular to the screen. Thus quads drawn after altering the
matrix which are coplanar with the XY plane will face the screen, and need only to be
translated to their proper 3D coordinates. This was the fastest method available, and
produced suitable results for the purposes of particles. This technique was described by
António Fernandes in a tutorial.

 ParticleEng class and Particle Class are found in world.cpp/world.hpp

Artificial Intelligence (Objective 9)

The A.I for an enemy sperm is very simple, and simply reacts to you if you approach.
The enemy will rotate to face you, approach, and fire. If it runs into a wall, it will stop
until it regains line of sight with you (as it will rotate sufficiently away from the wall to
move away, while trying to aim at you).

 Implemented in entity.cpp/entity.hpp.

Sound and Music (Objective 10)

The sound and music are implemented with the SoundManager class provided. It has
been extended to allow looping music, and to determine if music or a sound is currently
playing.

Music and Sound resources are in part created by me, others obtained elsewhere. All
copyrighted works included are for educational and private purposes only. Specific
credits are supplied in the game’s credits.

Sound editing is performed using Cool Edit, music editing with Sonic Foundry Acid
Music.

CS488 Shawn Henderson
Final Project Report 00183318

 10

Text/Font

The textual routines are based on a tutorial from by Giuseppe D'Agata, which uses
orthogonal quads for each letter, and where each quad is textured by a portion of a large
font map. The font texture itself is a modified version of the example font.

 Text code is implemented in viewer.cpp/viewer.hpp

Console

The console was a class prepared for personal project I have worked on, and was easily
adapted to use SDL and OpenGL.

 Console is implemented in Console.cpp/Console.hpp

Modules

Entity – This will be a series of classes representing you, and the enemy sperm. This
will also contain the weapon classes.

Sound – This provides the interface to the sound library which will be an adaptation of
the sound manager provided in the SDL stub.

Viewer – This handles the overall rendering, object managing, and input handling for the
game.

World – This is where the current level is defined, and handles the characters
interactions within it. World and WorldPortion classes are defined here.

Algebra – This will be borrowed from previous assignments as the general 3D math
library

Console – Contains the console class for use in toggling effects, running commands, etc.

Cam – Class for managing frustum

a2 – Matrix Transformation code from Assignment 2

Image – PNG image class

Material, Primitive, Scene, Scene_lua – All from Assignment 3, adapted to this project

CS488 Shawn Henderson
Final Project Report 00183318

 11

Organization

A5 – root of project, executable location, and of README

A5/texture – texture maps located here

A5/sound – location of sound files and music files for use with the game

A5/doc – documents stored here, game manual, etc.

A5/src – source files for building project

A5/model – model information (lua, related information) stored here

A5/key – keyframe editor source directory

Sources

All game source will be stored inside A5/src root. Keyframe Editor source is in A5/key

Executable

The final Executable will be stored in the A5 root directory, and run by ./zygote

Data Files

Source images for texturing and displacement maps will be stored in A5/texture in PNG
format.

Sounds will be stored in the A5/sound directory in whatever format required by the 3rd
party sound library.

objects will be stored as lua files as seen in A3 (extended as needed) along with keyframe
data, all stored in A5/model.

CS488 Shawn Henderson
Final Project Report 00183318

 12

Acknowledgements

Thanks to Richard Moore, his advice was invaluable. And thanks to Curtis Luk, Danielle
Dmytar and Brett Rowland, who all provided me with aesthetic evaluations, suggestions,
and indicators of offensiveness.

Bibliography

Sphere-Sphere Collision
Dopertchouk, Oleg
http://www.gamedev.net/reference/articles/article1234.asp

Fast, Minimum Storage Ray-Triangle Intersection
Möller, Tomas & Trumbore, Ben
http://www.acm.org/jgt/papers/MollerTrumbore97/

Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
Gribb, Gil & Hartmann, Klaus
http://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf

2D Texture Font
D'Agata, Giuseppe
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=17

